
DecimalsDecimals are Really Just FractionsDecimal notation is just a shorthand way of expressing certain fractions, namely those fractions with denominators that are powers of 10. For example, consider the number 2.345 Because of the placevalues of the decimal digits, this really means _{} Converting Decimals to FractionsBecause all the denominators are powers of 10, it is very easy to add these fractions by finding a common denominator. In this example, the common denominator is 1000, and we get _{} This suggests a general rule for converting a decimal number to its fraction form:
In the number 2.345, the last decimal place value is the thousandths place, so we put the digits 2345 over the denominator 1000. Of course we would usually want to reduce the resulting fraction to its simplest form. In this case _{} Repeating FractionsThe only time this method does not work is for repeating fractions. We know that 1/3 = 0.3333333... but how could we go from 0.3333333... back to 1/3? There is no last decimal place because the decimals repeat forever. Fortunately, there is a simple trick for this: · Put the repeating digit over a denominator of 9. So we see that in the case of 0.3333333...., the repeating digit is 3, and we make the fraction 3/9, which reduces to 1/3. If there is a group of more than one digit that repeats,
For example, in the fraction _{} we see that the group of digits 15 repeats, so we put 15 over a denominator of 99 to get _{} o One warning: This only works for the repeating fraction part of a number. If you have a number like 2.33333..., you should just work with the decimal part and rejoin it with the whole part after you have converted it to a fraction. o Irrational numbers like p or _{} have nonrepeating decimals, and so they cannot be written as fractions. You can, however, round them off at some point and produce an approximate fraction for them.
Converting Fractions to DecimalsWe know the decimal equivalents for some common fractions without having to think about it: 1/2 = 0.5, 3/4 = 0.75, etc. But how do we arrive at these numbers? Remember that the fraction bar means the same thing as division.
For example, _{} You can do the division with a calculator or by hand with long division. Rounding
Example: Round 11.3826 to the nearest hundredth. Solution: The hundredths place is where the 8 is. We look one digit to the right and see a 2, so we do not round up, leaving us with 11.38. Example: Round 11.3826 to the nearest thousandth. Solution: The thousandths place is where the 2 is. We look one place to the right and see a 6, so we round the 2 up, getting 11.383. Trouble with 9s.If the digit you are rounding up is a 9, then rounding it up will make it a 10, which is too big for one place. What happens is that the extra 1 gets added to the place to the left. Example: Round 3.49721 to the nearest hundredth. Solution: The hundredth place has a 9 in it. One step to the right is a 7, so we have to round up. This makes the 9 into a 10, but we really cant write the new number as 3.4(10). Instead, the extra 1 moves one place to the left and is added to the 4, giving us 3.50.
Example: Round 75.69996217 to the nearest tenthousandth Solution: The tenthousandths place is the last 9 in the number, and the place to its right is a 6, which means we round up. This makes the 9 into a 10, like this: 75.699(10) But of course we cannot put a 10 in that place, so the 1 moves to the left and gets added to the 9 there, making it into a 10: 75.69(10)0 This leaves us with the same problem, a 10 in one decimal place, so the extra 1 moves one more step to the left, turning that 9 into a 10: 75.6(10)00 Well, we still have the same problem, so we move the 1 yet another step to the left, where it adds on to the 6, finally leaving us with an acceptable answer: 75.7000 In general, · The extra 1 migrates to the left until it finds a restingplace. This means that the 1 moves to the left until it can be added to a digit less than 9, or until it falls off the end as a new digit out in front. Example: Round 999.96 to the nearest tenth. The digit to the right of the tenths place is a 6, so we have to round up. But when we round up the 9 it becomes a 10, forcing the one to be added to the left. Unfortunately, we find another 9 there and the process is repeated for each of the 9s until we reach the leading 9, which becomes a 10 resulting in 1000.0 Arithmetic with DecimalsAlthough calculators have made it much easier to do arithmetic with decimal numbers, it is nice to know that you can still do it without a calculator. Addition and SubtractionTo add or subtract decimal numbers, you use the familiar column method that you learned back in grade school. To use this method, the place values of the two numbers must be lined up. This means that the decimal points must be lined up, and you can fill in with zeros if one number has more decimal places than the other.
Example:
5.46 + 11.2
Becomes:
_{} MultiplicationTo multiply two decimal numbers, you can use the column method just as you would with whole numbers. You ignore the decimal points as you carry out the multiplication, and then you put the decimal point in the result at the correct place. The product will have the number of decimal places as the total number of decimal places in the factors. In the following example, the first factor has 2 decimal places and the second factor has 1 decimal place, so the product must have 3 decimal places:
_{} DivisionYou can divide decimal numbers using the familiar (?) technique of long division. This can be awkward, though, because it is hard to guess at products of decimals (long division, you may recall, is basically a guessandcheck technique). It can be made easier by multiplying both the dividend and divisor by 10s to make the divisor a whole number. This will not change the result of the division, because division is the same thing as fractions, and multiplying both the numerator and denominator of a fraction by the same number will not change the value of the fraction. For example, consider _{} This is the same as the fraction _{}, which is equivalent to the fraction _{}, obtained by multiplying the numerator and denominator by 10. Thus
_{},
which can be attacked with long division:

